正常人SC细胞株分化的M1型巨噬细胞模型表征

谭智海 黄嘉莹 郭嘉慧 颜梓淇 崔毅峙 王通* 罗彦彰* (暨南大学生命与健康工程研究院,广州 510632)

摘要 该文以佛波酯诱导正常人单核细胞来源的SC细胞建立SC-巨噬细胞模型,并表征其形态、吞噬作用、表面标志物和炎症细胞因子分泌情况,评价SC-巨噬细胞模型是否具有典型M1型 巨噬细胞表型。结果表明,SC-巨噬细胞贴壁生长,形态以圆形或椭圆形为主;具有caveolae介导的 吞噬荧光微球的能力,表面标志物CD11b和LPS受体CD14较SC细胞均显著上调。加入LPS后,SC-巨噬细胞大部分呈长梭形或纺锤形,有明显的伪足,巨噬细胞成熟标志物CD80和CD86均表达上调, 炎症细胞因子TNF-α、IL-1β、IL-6和IL-8的分泌水平均显著上调,这些细胞因子的mRNA转录水平 也有上调趋势。SC-巨噬细胞具有正常M1型巨噬细胞的表型特征,该研究的结论支持SC-巨噬细胞 模型更为广泛地应用于科研。

关键词 SC单核细胞; SC-巨噬细胞; PMA; 正常细胞

Characterization of M1 Macrophage Model Prepared from Normal Human Monocyte SC Cells

Tan Zhihai, Huang Jiaying, Guo Jiahui, Yan Ziqi, Cui Yizhi, Wang Tong*, Luo Yanzhang* (Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China)

Abstract We used phorbol 12-myristate 13-acetate (PMA) to induce the human normal monocyte SC cells to differentiate into SC-macrophages. To address whether SC cells could differentiate into typical M1 macrophages, we analyzed morphology, endocytosis, surface markers and secretion of inflammatory cytokines. We found that SC-macrophages grew in adherence mode, and their morphology was round or oval in general, while a small portion of cells were found to have elongating or irregular morphology. SC-macrophages could engulf fluorescent microspheres primarily via caveolae related endocytosis. SC-macrophages surface marker CD11b and LPS receptor CD14 were found to be significantly up-regulated as compared with SC cells; while post-LPS stimulation, SC-macrophages showed activation morphologies, including cell elongation, protrusion formation; the maturation marker of CD80 and CD86 were found to be upregulated, along with the significantly up-regulated secretion of inflammatory cytokines of TNF- α , IL-1 β , IL-6 and IL-8, which was consistent with the qPCR analysis on these cytokines. SC-macrophages had normal M1 macrophage phenotypes, and our evaluation favors the wide application of this cellular model in the field of macrophage associated investigations.

Keywords SC monocytes; SC-macrophage; PMA; normal cell

巨噬细胞是人体固有免疫和适应性免疫中的重要组成成分,其由单核细胞分化而来,具有

吞噬、抗原提呈和分泌多种炎症细胞因子的功能¹¹¹。在经典免疫反应中,巨噬细胞是对脂多糖

收稿日期: 2018-03-21 接受日期: 2018-08-27

Received: March 21, 2018 Accepted: August 27, 2018

国家自然科学基金项目(批准号: 81372135)资助的课题

^{*}通讯作者。Tel: 020-85225960, E-mail: tongwang@email.jnu.edu.cn; Tel: 020-85222616, E-mail: davidluo168@163.com

This work was supported by the National Natural Science Foundation of China (Grant No.81372135)

^{*}Corresponding authors. Tel: +86-20-85225960, E-mail: tongwang@email.jnu.edu.cn; Tel: +86-20-85222616, E-mail: davidluo168@163.com 网络出版时间: 2018-10-26 10:29:22 URL: http://kns.cnki.net/kcms/detail/31.2035.Q.20181026.1029.006.html

(lipopolysaccharide, LPS)的主要应答细胞, 其活化后 主动吞噬病原体^[1]。在艾滋病领域, 巨噬细胞也是 HIV-1病毒感染的关键靶细胞, 也是重要的病毒储存 库^[2-5]。在肿瘤微环境中, 肿瘤相关巨噬细胞可促进 血管新生、增强肿瘤细胞的侵袭转移能力和抑制细 胞毒性T细胞的活性, 从而促进肿瘤的发展^[6-8]。因此, 巨噬细胞在感染、炎症和癌症相关的多种疾病研究 中扮演重要角色。

目前,巨噬细胞模型在领域内非常匮乏。研究 者多采用小鼠骨髓来源的巨噬细胞(bone marrowderived macrophages, BMDM)或人单核细胞来源 巨噬细胞(human monocyte-derived macrophages, MDM)代表正常巨噬细胞。但是,无论是原代小鼠 骨髓细胞还是人单核细胞都是较难获得的实验原 材料,限制了其应用范围。为了解决实验材料问题, 出现了多种基于细胞株的单核/巨噬细胞模型,例如 THP-1、U-937和RAW264.7等。但是,这些细胞株 均为恶性肿瘤来源,因此,它们无法作为正常巨噬细 胞的代表。

就此我们发现, SC单核细胞系是现有建株细胞 中唯一一株正常人外周血来源的单核细胞系。目前 已有团队将其用于巨噬细胞相关研究中^[9-10]。然而, 这些研究未对SC单核细胞分化的巨噬细胞(SC-巨 噬细胞)开展系统的免疫学表征, 现有证据不足以证 明其是否具有典型的M1型巨噬细胞表型特征。因 此, 本研究以佛波酯(phorbol 12-myristate 13-acetate, PMA)诱导SC单核细胞建立SC-巨噬细胞模型, 并综 合形态、吞噬作用、表面受体和炎症细胞因子分泌 的多种证据来评价该细胞是否具有典型的M1型巨 噬细胞表型特征。

1 材料与方法

1.1 材料

 1.1.1 主要实验材料与仪器 SC细胞(ATCC[®] CRL-9855™)购自ATCC公司; BD Accuri™ C6流 式细胞仪购自BD Biosciences公司; 合成引物及 StepOne Plus实时荧光定量PCR仪购自ThermoFisher Scientific公司。

1.1.2 主要试剂 IMDM培养基购自英潍捷基(上海)贸易有限公司; 胎牛血清购自Gibco公司; PMA试剂购自Sigma公司; 乳酸脱氢酶(LDH)细胞毒性检测试剂盒、LPS购自上海碧云天生物技术有限公司;

BD Cytometric Bead Array(CBA)人炎症因子检测 试剂盒购自BD Biosciences公司; HiPure Total RNA Plus Mini Kit购自Magen公司; DNase I(RNase-free) 购自Transgen公司; GoScript[™] Reverse Transcription Mix购自Promega公司; SsoAdvanced[™] Universal SYBR® Green Supermix购自 Bio-Rad公司; 0.5 µm FluoSpheres[®] Carboxylate-Modified Microspheres 荧 光微球购自英潍捷基(上海)贸易有限公司; PE antihuman CD11b Antibody, FITC anti-human CD14 Antibody, PE anti-human CD86 Antibody, FITC anti-human CD54 Antibody, FITC anti-human CD80 Antibody、Human TruStain FcX™和同型 对照抗体[包括FITC Mouse(IgG1, κ) Isotype Ctrl Antibody, PE Mouse (IgG1, κ) Isotype Ctrl Antibody 和 PE Mouse(IgG2b, κ) Isotype Ctrl Antibody]购自 Biolegend公司。

1.2 方法

1.2.1 细胞培养及处理 用于培养SC细胞的完全 IMDM培养基含1.5 g/L碳酸氢钠、0.05 mmol/Lβ-巯基乙醇、0.1 mmol/L次黄嘌呤、0.016 mmol/L 胸苷和10%胎牛血清。细胞置于5% CO₂、37 °C 培养箱培养。实验中,将SC细胞以0.4×10⁶/孔的浓度 种入6孔板,每孔以2 mL完全IMDM培养基培养。以 含60 ng/mL PMA的完全IMDM培养基培养SC细胞 48 h,即制备SC-巨噬细胞。在LPS诱导组,SC细胞 在含60 ng/mL PMA溶液的完全IMDM培养基条件下 培养6 h后,加入LPS溶液(终浓度为100 ng/mL)继续 培养42 h,总计48 h,得到LPS活化的SC-巨噬细胞。

1.2.2 细胞形态的观察 以倒置荧光显微镜观察 细胞形态,以ImageJ图像处理软件标注图像标尺、测量细胞的长宽并统计分析其细胞形状指数(shape index=细胞长度/细胞宽度)^[11]。

1.2.3 细胞毒性检测 根据我们已发表的论文中 的方法,我们评价了本研究各细胞模型的细胞毒性 作用^[12]。具体方法为:将细胞以0.2×10⁶/孔的浓度种 入12孔板中,每孔以1 mL完全IMDM培养基培养。 将每种处理的细胞平行分成2组进行培养。按方 法1.2.1的细胞培养及处理条件培养细胞48 h后,在 其中一组细胞培养上清中加入100 μL LDH裂解液 (Lysis Solution)继续培养1 h,作为最大酶活性对照 组;另一组不作处理,作为实验组。将培养上清转移 至EP管中,以400 ×g离心5 min后,保留上清。将上 清稀释3倍,转至96孔板中。向各孔分别加入60 μL LDH检测工作液,室温避光孵育30 min。随后用酶 标仪测定490 nm、630 nm处的吸光度。

1.2.4 SC-巨噬细胞吞噬动态过程检测 将已经过PMA诱导48 h的SC-巨噬细胞培养体系换为2 mL IMDM条件培养基(含1.68×10⁸个/mL荧光微球的完全IMDM培养基)^[13-14],并在5% CO₂、37 ℃孵育0、6、12、24 h。将细胞转移至离心管,用PBS洗涤2次(220×g离心5 min)。最后用500 μL PBS重悬细胞,经70 μm筛网过滤后,用C6流式细胞仪检测。

1.2.5 细胞表面标志物检测 我们对巨噬细胞分化标志物CD11b^[15]、LPS受体CD14^[16]以及成熟巨噬细胞共刺激分子CD86/CD80^[11,17]进行检测。首先,我们将细胞转移至离心管,以220×g离心5 min后,用PBS洗涤2次(220×g离心5 min)。以100 μL PBS重悬细胞,加入5 μL Human TruStain FcXTM,室温孵育15 min。将细胞悬液分两管,分别加入细胞表面标志物的抗体及其相应同型对照,室温避光孵育20 min。用PBS洗涤1次(220×g离心5 min),用500 μL PBS重悬细胞,经70 μm筛网过滤后,用C6流式细胞仪检测。

1.2.6 炎症细胞因子检测 依照CBA人炎症因子 检测试剂盒说明书和我们报道的方法进行检测^[11-12]。 将细胞的培养体系换为2 mL IMDM培养基,培养24 h 后,转移细胞培养上清至离心管中,以220 ×g离心5 min, 取25 μL上清液,加入CBA试剂盒提供的捕获微球及 PE检测试剂各25 μL,混匀后室温避光孵育3 h。以4 ℃、 200 ×g离心5 min,保留沉淀。加入500 μL Wash Buffer 洗涤1次(4 ℃、200 ×g离心5 min),并加入150 μL Wash Buffer重悬微球,最后用C6流式细胞仪检测。

1.2.7 实时荧光定量PCR(qPCR)检测 按方法1.2.1 的细胞培养及处理条件培养细胞48 h后,我们按照 HiPure Total RNA Plus Mini Kit说明书进行细胞总 RNA的提取。具体为:用700 μL RTL Lysis Buffer(含 14 μL β-巯基乙醇)将细胞裂解后,用1 mL注射器吹 打裂解液数次。加入700 μL RNA Binding Buffer至 裂解液中,混合后将裂解液转移至HiPure RNA Mini Column,以12 000 ×g离心1 min后弃去滤液。将剩余 裂解液加入HiPure RNA Mini Column中,再次离心 (12 000 ×g离心1 min)。在HiPure RNA Mini Column 中加入300 μL Buffer RW1,以12 000 ×g离心1 min 后弃去滤液。把HiPure RNA Mini Column装入新收 集管中,加入DNase I反应液后室温静置15 min。在 HiPure RNA Mini Column中加入500 µL Buffer RW1, 室温静置1 min,以12 000 ×g离心1 min后弃滤液。在 HiPure RNA Mini Column中加入500 µL Buffer RW2, 以12 000 ×g离心1 min(重复该步骤2次),弃去滤液后 空柱离心(12 000 ×g离心2 min)。将HiPure RNA Mini Column转移至新收集管中,加入30 µL RNase-Free水 至HiPure RNA Mini Column上,室温静置2 min,以 12 000 ×g离心1 min,收集滤液,即为RNA溶液。随 后,用2%琼脂糖凝胶电泳评估RNA的完整性。

然后,根据DNase I(RNase-free)说明书将RNA 溶液中的DNA去除。反应体系: RNA 9 µg, 10× DNase I Reaction Buffer 2 µL, DNase I 3 µL,补充Nuclease-Free水至终体积为20 µL。反应过程: 37 ℃ 30 min, 加入1 µL 200 mmol/L EDTA溶液, 65 ℃ 10 min。之后, 根据GoScriptTM Reverse Transcrip-tion Mix说明书 将RNA逆转录为cDNA。逆转录体系为: GoScriptTM Reaction Buffer (Oligo dT) 4 µL, GoScriptTM Enzyme Mix 2 µL, RNA 2 µg,补充Nuclease-Free水至终体积为 20 µL。逆转录反应程序: 25 ℃ 5 min, 42 ℃ 20 min, 95 ℃ 5 min。

最后,我们用SsoAdvancedTM Universal SYBR[®] Green Supermix对炎症细胞因子相应基因进行 qPCR检测。引物信息如表1所示。PCR扩增体系 为: SYBR Green supermix (2×) 10 μ L;上下游引物共 2 μ L,终浓度均为0.5 μ mol/L; cDNA 2 μ L; RNase-free 水6 μ L。PCR扩增程序为: 95 °C预变性30 s; 95 °C变 性5 s, 60 °C延伸15 s, 40个循环;在(65~95) °C的条 件下检测溶解曲线。其中,以*GAPDH*为内参基因, *ACt=*Ct_{GAPDH}-Ct_{目的基因},以*ACt*计算目标细胞基因的相 对表达量。

1.2.8 统计学分析 本研究使用GraphPad Prism 6.0软件进行统计检验。细胞形态学分析实验中,形 状指数的多组间差异分析采用Kruskal-Wallis test,进 一步采用Dunn's test进行多重比较。SC-巨噬细胞吞 噬实验、细胞表面标志物的流式细胞术检测实验和 炎症细胞因子转录水平的qPCR检测实验均采用非 配对Student's t test和Kolmogorov-Smirnov test进行 两组间差异分析。细胞毒性实验、炎症细胞因子分 泌水平检测实验和炎症细胞因子转录水平的qPCR 检测实验均采用单因素方差分析进行多组间差异分 析,进一步采用Tukey's test进行多重比较。P<0.05 为差异有统计学意义。

2 结果

2.1 不同刺激状态下SC细胞的形态

正常培养状态下的SC细胞为悬浮细胞,细胞不 聚团,大小较一致,呈圆形或椭圆形(图1A)。在PMA 诱导后,SC-巨噬细胞贴壁生长,出现聚团,细胞形 态主要为圆形或椭圆形,有少部分细胞呈长梭形或 不规则形态,且周边或两极可见伸展的伪足(图1B)。 在LPS刺激下,SC-巨噬细胞贴壁生长,细胞出现大 量长梭形或纺锤形变化,有明显的伪足(图1C),其形 状指数为(1.997±0.125),显著高于未经LPS刺激的 SC-巨噬细胞(1.260±0.063)(图1D, P<0.05)。

以台锥虫蓝染色法进行细胞计数,我们发现, SC细胞在培养48 h后,细胞数从0.40×10⁶/孔升高至 2.05×10⁶/孔。经PMA诱导48 h后,SC-巨噬细胞的细 胞数为1.38×10⁶/孔,细胞数相对SC细胞下降。SC-巨噬细胞在LPS刺激后,细胞数为0.98×10⁶/孔,暗示 LPS刺激对SC-巨噬细胞有毒性。

2.2 不同刺激状态下SC细胞的细胞毒性

经LDH的三次技术重复测定(图2), SC细胞组细胞上清的LDH活性与培养基本底接近,它

Table 1 Primer sequences for qPCR		
基因名称	上游引物(5'→3')	下游引物(5'→3')
Gene name	Sense primer $(5' \rightarrow 3')$	Anti-sense primer $(5' \rightarrow 3')$
<i>IL10</i>	GGG GCT TCC TAA CTG CTA CA	AGG TTA GGG GAA TCC CTC CG
TNF	TGG GAT CAT TGC CCT GTG AG	GGTGTCTGAAGGAGGGGGTA
IL6	CCA GGA GCC CAG CTA TGA AC	AGA AGG CAA CTG GAC CGA AG
IL1B	TTC GAG GCA CAA GGC ACA A	TTC ACT GGC GAG CTC AGG TA
IL8	TGT CTG GAC CCC AAG GAA AAC	TGG CAT CTT CAC TGA TTC TTG G
GADPH	GAC AGT CAG CCG CAT CTT CT	GCG CCC AAT ACG ACC AAA TC

表1 qPCR引物序列信息

A: SC细胞在完全IMDM培养基培养48 h后的形态; B: SC细胞在含60 ng/mL PMA的完全IMDM培养基培养48 h后的形态; C: SC细胞在含60 ng/mL PMA的完全IMDM培养基培养6 h后,加入终浓度为100 ng/mL的LPS溶液继续培养42 h后的细胞形态; D: 统计分析三组细胞形状指数(shape index=细胞长度/细胞宽度),数据以mean±S.E.M.表示,*P<0.05, n=50。

A: shape of SC cells after cultured in complete IMDM medium for 48 h; B: shape of SC cells after cultured in complete IMDM medium included 60 ng/mL PMA for 48 h; C: shape of SC cells after being cultured in complete IMDM medium included 60 ng/mL PMA for 6 h, followed by adding LPS solution with final concentration of 100 ng/mL and cultured for 42 h; D: statistical analysis of cell shape index (shape index=cell length/cell width); data are shown as mean \pm S.E.M., *P<0.05, n=50.

图1 SC细胞和SC-巨噬细胞的形态学分析

Fig.1 Morphological analysis of SC cells and SC-macrophages

们的 *D*(*D*_{490 nm}-*D*_{630 nm})值分别为(0.164±0.003)、 (0.133±0.001)。经PMA诱导后, SC-巨噬细胞和LPS 处理的SC-巨噬细胞均显著释放更多的LDH至上 清,它们的*D*(*D*_{490 nm}-*D*_{630 nm})值分别为(0.222±0.004)、 (0.236±0.005)。作为阳性对照,三组细胞的裂解液 均显示出高水平LDH活性,它们的*D*(*D*_{490 nm}-*D*_{630 nm}) 值均大于0.826。因此,LDH实验验证了PMA和LPS 均对SC细胞具低水平的细胞毒性作用。

2.3 SC-巨噬细胞吞噬荧光微球的动态过程

经4次独立生物学重复,我们发现在所有时点, SC细胞均不具备吞噬荧光微球的能力(图3A),这是 典型的单核细胞性质。在PMA的诱导下, SC-巨噬

A: percentage of SC cells that intake fluorescent microsphere; B: percentage of SC-macrophages that intake fluorescent microspheres at different time points; C: statistical results. Data are shown as mean \pm S.E.M., **P*<0.05 compared with the 0 h time point of the PMA+ group, [#]*P*<0.05 compared with the 12 h time point of the PMA+ group; *n*=4.

图3 SC-巨噬细胞吞噬荧光微球的动态过程

Fig.3 Dynamics of the endocytosis of SC-macrophages

细胞吞噬微球的细胞比例在0、6、12、24 h四个时 点呈逐渐上升的趋势(图3B)。当将后一时点和前一 时点数据进行统计学比较时,我们发现,6 h和24 h时 点较前一时点的可吞噬微球细胞比例均显著升高, 在24 h这一比例达到(38.43±4.15)%(图3C)。这表明, SC-巨噬细胞具备典型的吞噬细胞性质。

2.4 流式细胞术检测细胞表面标志物的表达

为判断SC-巨噬细胞是否表达经典的M1型巨 噬细胞表面标志物,我们用流式细胞术检测SC-巨噬 细胞表面分子,包括巨噬细胞标志物CD11b、LPS 受体CD14以及巨噬细胞成熟标志物CD80和CD86。 三次独立生物学实验结果显示,SC细胞经PMA诱 导为SC-巨噬细胞后, CD11b(图4A)的平均荧光强 度(mean fluorescent intensities, MFIs)显著上调,从 (2888±268)升高至(22114±5251),约为原来的7.7倍 (图4B, P<0.05); CD14(图4C)的MFIs也显著上调,从 (2424±125)升高至(18545±4915),约为原来的7.7倍 (图4C, P<0.05)。这表明, SC细胞经PMA诱导后,分 化为巨噬细胞。SC细胞经PMA诱导为SC-巨噬细胞 后, CD86(图4E)与CD80(图4F)的MFIs均不超过原来 的1.5倍。SC-巨噬细胞经LPS刺激后, CD86的MFIs 从2285升高至5701,约为原来的2.5倍(图4E); CD80 的MFIs从2049升高至6174,约为原来的3.0倍(图 4F)。这表明, SC-巨噬细胞可对LPS应答并且分化成

A、C:不同培养条件下SC细胞的CD11b和CD14流式细胞术分析结果,红色数字代表平均荧光强度(MFIs)值。B、D:统计结果,数据以mean±S. E.M.表示,*P<0.05, n=3。E、F:不同培养条件下CD86和CD80的流式细胞术分析结果。

A,C: flow cytometry analysis of CD11b and CD14 expression of SC cells cultured in different condition; the red numbers represent the mean fluorescence intensity (MFIs) values. B,D: statistical results, data are shown as mean \pm S.E.M., **P*<0.05, *n*=3; E,F: flow cytometry analysis of CD11b and CD14 expression of SC cells cultured in different condition.

图4 细胞表面标志物的流式细胞术检测

Fig.4 Cell surface markers analysis by flow cytometry

熟。因此, SC-巨噬细胞表面标志物的表达情况具典型的M1型巨噬细胞特征。

2.5 炎症细胞因子的分泌情况

为了评价SC-巨噬细胞是否可对LPS产生经典 的固有免疫应答,我们用LPS结合CBA检测SC-巨噬 细胞炎症细胞因子的分泌情况。我们测试的细胞因 子包括IL-12p70、TNF-α、IL-1β、IL-6、IL-8和IL-10,典型的流式细胞结果见图5A。结果表明,IL-10 的定量结果均低于试剂盒检测下限,SC细胞所分泌 的IL-12p70(图5B)、TNF-α(图5C)、IL-1β(图5D)、 IL-6(图5E)和IL-8(图5F)与SC-巨噬细胞相比均无显 著差异。SC-巨噬细胞经LPS刺激后,除了IL-10和 IL-12p70,所有炎症细胞因子较其他两组都显著上 调(P<0.05);较未经LPS诱导的SC-巨噬细胞,LPS组 细胞的TNF-α上调约228倍(图5C),IL-1β从0上调至 (26.76±5.66)ng/L(图5D),IL-6上调约2003倍(图5E), IL-8上调约83倍(图5F)。结果表明,SC-巨噬细胞可 对LPS产生经典的固有免疫应答,具有典型的M1型 巨噬细胞特征。

2.6 qPCR检测炎症细胞因子转录水平mRNA的 表达情况

为了验证炎症细胞因子在转录水平上的表

A: LPS介导SC-巨噬细胞炎症细胞因子分泌的流式细胞术分析结果; B~F:炎症细胞因子IL-8、IL-1β、IL-6、IL-10、TNF-α和IL-12p70分泌量的 统计分析结果,数据以mean±S.E.M.表示,*P<0.05, n=3。

A: flow cytometry analysis of inflammatory cytokines secretion of LPS-treated SC-macrophages. B-F: statistical analysis of the secretion levels of inflammatory cytokines IL-8, IL-1 β , IL-6, IL-10, TNF- α and IL-12p70. Data are shown as mean±S.E.M., *P<0.05, n=3.

图5 炎症细胞因子分泌水平的流式细胞术分析

Fig.5 Flow cytometry analysis on the inflammatory cytokine secretion

Fig.6 qPCR detection of the transcriptional level of inflammatory cytokines

达变化情况,我们利用qPCR测定了炎症细胞因子 mRNA的表达。除SC细胞的*IL10*(图6A)和*IL6*(图6D) 表达量低于检测下限,不作统计分析之外,其余均进 行统计分析。统计结果显示,较SC细胞,SC-巨噬细 胞的*TNF*(图6B)显著上调;经LPS刺激后,SC-巨噬细 胞除*IL10*外,*TNF、IL1B、IL8*和*IL6*的表达量均进 一步显著上调。因此,在本研究的细胞模型中,这些 炎症细胞因子在转录水平和蛋白水平上变化趋势一 致。

3 讨论

在本研究中,我们确证了以PMA诱导SC单核细胞建立的SC-巨噬细胞模型无论在形态、吞噬作用、 表面标志物还是炎症细胞因子分泌情况方面都具有 典型的M1型巨噬细胞表型。这些结果表明,该细胞 模型可作为正常巨噬细胞的代表,并具备广泛应用 于巨噬细胞相关生物医学领域研究的潜质。

在细胞形态特征方面,我们发现SC-巨噬细胞

贴壁生长,并对LPS刺激可产生典型的炎症相关形态学应答,包括拉长和伪足的形成等。Hultgren等^[9] 也发现,SC单核细胞经PMA处理后,细胞形态有变 长的趋势。人外周血单核细胞在体外经M-CSF诱导 成MDM后,也有拉长趋势,再用IFN-γ/LPS处理后, 趋势更明显^[18]。J774A.1细胞^[19]、THP-1细胞^[20]和 U-937细胞^[21]在不同条件下诱导成巨噬细胞后,都具 有细胞拉长和形成伪足等特征。经LPS活化后,这 些特征更加明显。我们的前期研究也发现,小鼠骨 髓来源巨噬细胞有同样的形态特征^[4,11]。由此可见, SC-巨噬细胞的形态学特征与其他巨噬细胞模型有 一致性。

在吞噬作用方面,本研究以细胞吞噬0.5 μm荧 光微球的能力观察细胞吞噬作用的动态变化规律。 结果表明, SC-巨噬细胞与SC单核细胞相比,有更强 的吞噬能力,且在24 h内吞噬微球的细胞数比例持 续上升,最终达38%左右。本团队曾利用该技术研 究过滑膜细胞吞噬能力,我们以0.2 μm与0.5 μm荧光 微球的吞噬分别代表clathrin与caveolae介导的细胞 内吞作用^[13]。吞噬是巨噬细胞的基本特征,我们的 结果表明, SC-巨噬细胞可主要通过caveolae介导的 内吞作用进行吞噬。也有研究表明, THP-1细胞分 化为巨噬细胞后,有约48%细胞吞噬荧光微球^[22],与 我们的结果十分接近。

在细胞表面标志物方面,我们的结果表明,SC-巨噬细胞与SC细胞相比,CD11b与CD14均显著升 高,经LPS处理后,CD80与CD86均呈上调趋势。 CD11b与CD14都是典型的巨噬细胞表面标志物。有 研究发现,THP-1细胞分化为巨噬细胞后,CD11b^[22] 和CD14^[23]的表达量显著升高。RAW264.7巨噬细胞 ^[24]和小鼠骨髓来源巨噬细胞^[25]经LPS处理后,CD80 与CD86表达量均上调。

在炎症细胞因子分泌情况方面,我们发现经 LPS活化后,SC-巨噬细胞所分泌的包括TNF-α、IL-1β、IL-6和IL-8在内的炎症细胞因子均显著升高,这 些变化与转录水平分析结果一致。在常见的巨噬细 胞系中,有研究表明,炎症细胞因子IL-6和IL-8与单 核细胞相比均显著升高,经LPS处理后,TNF-α、IL-1β、IL-6和IL-8的分泌量均显著上调^[1,26-27]。也有研究 表明,在RAW264.7巨噬细胞中敲低*NFE2L1*(nuclear factor erythroid 2 like 1)基因的表达,静息巨噬细胞 向M1型巨噬细胞分化的指示基因表达上调,包括 *IL*-6、*IL-1β*等,且NFE2L1蛋白可负调控巨噬细胞向 M1型分化和产生促炎性应答^[28]。这些报道支持了 本研究所建立的细胞模型具有典型巨噬细胞表型这 一观点。

除了M1型巨噬细胞外,巨噬细胞还可在IL-4/ IL-13、IL-10或dexamethason等的刺激作用下,分 化为M2型巨噬细胞。其标志物主要有:IL-10、 CD206、CD163、Arginase-1和Dectin-1等^[29-30]。例 如,有研究发现,正常人外周血来源的单核细胞,经 M-CSF或GM-CSF诱导分化为巨噬细胞后,分别在 IL-4、IL-10或dexamethason的刺激作用下,高表达 细胞表面标志物MR、CD163,且炎症细胞因子IL-6、 TNF-α和TGF-β表达均上调^[18]。Yeung等^[30]的研究表 明,在IL-4/IL-13诱导下,THP-1细胞可分化为M2型 巨噬细胞,较未分化的巨噬细胞高表达*IL-1β、IL-8、 SA*和*MR*等基因。这种M2型巨噬细胞通常具抗炎症、 促肿瘤发生与侵袭等功能,也是感染、炎症和癌症 相关疾病研究中的重要对象。在M2型巨噬细胞的 研究中,同样存在缺乏正常巨噬细胞模型的问题。因此,在本研究的基础上,还应在今后的研究中考虑进一步评价由SC细胞分化而成的巨噬细胞是否具有典型的M2型巨噬细胞表型特征。

综上,本研究以PMA诱导SC单核细胞,建立了 SC-巨噬细胞模型,并首次综合形态、吞噬作用、表 面标志物和炎症细胞因子多方面证据,证明了SC-巨 噬细胞具典型的M1型巨噬细胞表型。SC细胞来源 于正常细胞,可快速大量扩增,是巨噬细胞研究的有 利工具,本研究的结论支持SC-巨噬细胞模型更为广 泛的科研应用。

参考文献 (References)

- Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, *et al.* Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018; 233(9): 6425-40.
- 2 Rose R, Nolan DJ, Maidji E, Stoddart CA, Singer EJ, Lamers SL, *et al.* Eradication of HIV from tissue reservoirs: challenges for the cure. AIDS Res Hum Retroviruses 2018; 34(1): 3-8.
- 3 Honeycutt JB, Thayer WO, Baker CE, Ribeiro RM, Lada SM, Cao Y, et al. HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy. Nat Med 2017; 23(5): 638-43.
- 4 王通,马文心,郭嘉慧,陈智鹏,崔毅峙.携带中国株HIV-1gp120基因的重组腺病毒的构建及其感染巨噬细胞的 形态学研究.中国病理生理杂志(Wang Tong, Ma Wenxin, Guo Jiahui, Chen Zhipeng, Cui Yizhi. Morphological study of macrophages infected with constructed recombinant adenovirus carrying gp120 gene of Chinese HIV-1 strain. Chinese Journal of Pathophysiology) 2012; 28(6): 1034-8.
- 5 Wang T, Gong N, Liu J, Kadiu I, Kraft-Terry SD, Mosley RL, et al. Proteomic modeling for HIV-1 infected microglia-astrocyte crosstalk. PLoS One 2008; 3(6): e2507.
- 6 Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 2014; 6(3): 1670-90.
- 7 Dehne N, Mora J, Namgaladze D, Weigert A, Brune B. Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol 2017; 35: 12-9.
- 8 Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33(3): 119-26.
- 9 Hultgren EM, Patrick ME, Evans RL, Stoos CT, Egland KA. SUSD2 promotes tumor-associated macrophage recruitment by increasing levels of MCP-1 in breast cancer. PLoS One 2017; 12(5): e0177089.
- 10 Pakala R, Watanabe T, Benedict CR. Induction of endothelial cell proliferation by angiogenic factors released by activated monocytes. Cardiovasc Radiat Med 2002; 3(2): 95-101.
- 11 Chen Z, Yang L, Cui Y, Zhou Y, Yin X, Guo J, *et al.* Cytoskeleton-centric protein transportation by exosomes

transforms tumor-favorable macrophages. Oncotarget 2016; 7(41): 67387-402.

- 12 Shen S, Guo J, Luo Y, Zhang W, Cui Y, Wang Q, et al. Functional proteomics revealed IL-1beta amplifies TNF downstream protein signals in human synoviocytes in a TNF-independent manner. Biochem Biophys Res Commun 2014; 450(1): 538-44.
- 13 Tang S, Deng S, Guo J, Chen X, Zhang W, Cui Y, *et al.* Deep coverage tissue and cellular proteomics revealed IL-1beta can independently induce the secretion of TNF-associated proteins from human synoviocytes. J Immunol 2018; 200(2): 821-33.
- 14 Han Y, Wang H, Shao Z. Monocyte-derived macrophages are impaired in myelodysplastic syndrome. J Immunol Res 2016; 2016: 5479013.
- 15 Xu Y, Wang L, Bai R, Zhang T, Chen C. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy. Nanoscale 2015; 7(38): 16100-9.
- 16 Bode JG, Ehlting C, Haussinger D. The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cell Signal 2012; 24(6): 1185-94.
- 17 Hoebe K, Janssen EM, Kim SO, Alexopoulou L, Flavell RA, Han J, *et al.* Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trifdependent and Trif-independent pathways. Nat Immunol 2003; 4(12): 1223-9.
- 18 Vogel DY, Glim JE, Stavenuiter AW, Breur M, Heijnen P, Amor S, *et al*. Human macrophage polarization *in vitro*: maturation and activation methods compared. Immunobiology 2014; 219(9): 695-703.
- 19 Wu MH, Pan TM, Wu YJ, Chang SJ, Chang MS, Hu CY. Exopolysaccharide activities from probiotic bifidobacterium: Immunomodulatory effects (on J774A.1 macrophages) and antimicrobial properties. Int J Food Microbiol 2010; 144(1): 104-10.
- 20 张加芬, 李新宇, 宋莎莎, 王永芳. 贝壳杉烷型二萜类化合物 PV006对THP-1源性巨噬细胞M1型极化的调节作用. 医学研 究杂志(Zhang Jiafen, Li Xinyu, Song Shasha, Wang Yongfang. Effects of kaponane diterpenoids compound PV006 on M1 polarization of THP-1-derived macrophages. Journal of Medical Research) 2017; 47(5): 80-6.

- 21 Herrmann I, Gotovina J, Fazekas-Singer J, Fischer MB, Hufnagl K, Bianchini R, *et al.* Canine macrophages can like human macrophages be *in vitro* activated toward the M2a subtype relevant in allergy. Dev Comp Immunol 2018; 82: 118-27.
- 22 Michee S, Brignole-Baudouin F, Riancho L, Rostene W, Baudouin C, Labbe A. Effects of benzalkonium chloride on THP-1 differentiated macrophages *in vitro*. PLoS One 2013; 8(2): e72459.
- 23 Zamani F, Zare Shahneh F, Aghebati-Maleki L, Baradaran B. Induction of CD14 expression and differentiation to monocytes or mature macrophages in promyelocytic cell lines: new approach. Adv Pharm Bull 2013; 3(2): 329-32.
- 24 Byun EB, Jang BS, Kim HM, Yang MS, Sung NY, Byun EH. Gamma irradiation enhanced Tollip-mediated antiinflammatory action through structural modification of quercetin in lipopolysaccharide-stimulated macrophages. Int Immunopharmacol 2017; 42: 157-67.
- 25 Kern K, Pierre S, Schreiber Y, Angioni C, Thomas D, Ferreiros N, et al. CD200 selectively upregulates prostaglandin E2 and D2 synthesis in LPS-treated bone marrow-derived macrophages. Prostaglandins Other Lipid Mediat 2017; 133: 53-9.
- 26 Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 2014; 5: 491.
- 27 Rossol M, Heine H, Meusch U, Quandt D, Klein C, Sweet MJ, *et al.* LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol 2011; 31(5): 379-446.
- 28 Wang H, Zhu J, Liu Z, Lv H, Lv P, Chen F, *et al.* Silencing of long isoforms of nuclear factor erythroid 2 like 1 primes macrophages towards M1 polarization. Free Radic Biol Med 2018; 117: 37-44.
- 29 Roszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm 2015; 2015: 16.
- 30 Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol 2015; 62(3): 607-16.